Sunday, 6 March 2016

Snapdragon 820 to be Made by Samsung

Rumors had it that Qualcomm would come to Samsung for the fabrication of their new Snapdragon 820chipset. At launch, the announcement of a 14nm build narrowed it down to just a couple alternatives.
Today, we learned that the Snapdragon 820 will, in fact, be built by Samsung. While it was likely this would be the case after learning the process specification, we now have official confirmation that it won’t be GlobalFoundries’ 14nm yield to make it into the big-name flagships of 2016. This is big news for two reasons: one, it confirms that the 820 will use Samsung’s class-leading fabrication process; and two, it could mean that the 820 will have few issues and, perhaps, even make it to Samsung flagships.
Alongside this reveal came the official announcement of the 2nd generation, 14nm FinFET process mass production from Samsung. With this new generation, dubbed LPP (“Low-Power Plus”), the company claims to have achieved unparalleled power efficiency through optimizations to their three-dimensional FinFET transistor structure, and will be used in their upcoming Exynos 8 chipset set to appear on Samsung flagships throughout 2016 (explained here). The new process can deliver up to 15% higher speed and 15% less power consumption over the previous 14nm LPE process, a considerable gain considering this is mostly optimization of the process and structure rather than a full size change.
Keep in mind that the Snapdragon 820 using Samsung’s fabrication process does not guarantee that the chipset will find its way to Samsung flagships (and this is not the first time it’s happened either). Recent benchmark leaks have suggested it would, but we must not get excited just yet (as much as we want AOSP ROMs on Samsung hardware). That being said, the 820 using the same 14nm LPP process found in the newer Exynos will likely result in a more competitive chipset race this year. In 2015, the Snapdragon 810 not only suffered throttling issues, but the A57 cores on the 810 had relatively high power consumption and did so especially on 20nm nodes, which was one of the reasons why sustained performance took a hit and A53 cores had to be used so often.

Marshmallow rollout for the Galaxy S6 edge, Galaxy S6 edge+ and Galaxy Note 5

Two weeks ago, Telus published its Android 6.0.1 Marshmallow update schedulefor its carrier-branded variants of the Galaxy S6 edgeGalaxy S6 edge+ and Galaxy Note 5. However, it’s now issued a statement declaring that it will not be able to meet its self-imposed distribution deadlines of March 9th and March 16th.
Instead, it will now roll out the upgrade for the Galaxy S6 edge+ and Galaxy Note 5 a few days after on March 13th, and will push out an identical over-the-air (OTA) update for the standard Galaxy S6 edge on March 30th — 17 days later than was previously expected. There is some good news, though. Owners of the non-curvedGalaxy S6 are still on track to receive the firmware on April 13th.

Telus-Revised-Update-Schedule

Saturday, 5 March 2016

OnePlus 2 Receiving OxygenOS 2.2.1 Update, Marshmallow Still Pending

The good news is OnePlus 2 is now eligible for another update, but you'll be disappointed to learn that it's not the highly anticipated Android 6.0 Marshmallow.
According to OnePlus, the new OxygenOS 2.2.1 update brings lots of improvements and a few new features that should enhance the smartphone's functionality.
One of the most significant improvements announced by OnePlus is aimed at photographers. OxygenOS 2.2.1 brings full RAW support in OnePlus Camera, a new feature that wasn't available at launch.
But that's not all, as OnePlus confirmed the update contains improvements to Bluetooth and Ultra SIM compatibility. Also, the Chinese company states that it has provided GMS 3.0 upgrade to OnePlus 2 users.
Some improvements for roaming issues have also been added, along with a fix for occasional image corruption issue in OnePlus Camera.
Romanian language support, security patch update
The official changelog also mentions a security patch update, but no additional details have been provided. Last but not least, Romanian language support has been added to OnePlus 2 too.
If you own the OnePlus 2, then you should know that OxygenOS 2.2.1 update is rolled out in stages, so it will not be available for all devices at the same time.
In case you wonder whether or not this a pre-Marshmallow update, you will have to wait for OnePlus' confirmation because the Chinese company is still mum on when exactly the upgrade will be released.
Thankfully, OnePlus has been delivering many updates to its smartphones, so we can expect things to continue to improve in the coming months.

Sony Xperia Z5 series get Android Marshmallow in Japan

Sony has begun rolling out the Android 6.0 Marshmallow update for the entire Xperia Z5 lineup in Japan - Xperia Z5Xperia Z5 Compact, and Xperia Z5 Premium. The Marshmallow update for Sony Xperia Z5 has been already available in Turkey.
The new Marshmallow-based firmware improves on the battery manager, app permissions manager, notification area customizations, and it brings a new Xperia Home launcher as well as an updated Camera app.
Sony UK announced the Marshmallow rollout for the Xperia Z5 series, the Xperia Z4 Tablet, and Xperia Z3+ units will begin on March 7. Now that Sony is seeding Marshmallow updates in Turkey and Japan, we believe March 7 should be the date for the global release for those updates.
Thank you, Chary, for the tip!
Source • Via

S7 Edge Throttling & Thermals

now that the Galaxy S7 and S7 Edge have arrived to consumer hands, we can finally begin exploring the nature of the Snapdragon 820 thanks to our first set of tests.
While no amount of single-device testing will reveal the true nature of the 820, we can, at the very least, see how the 820 behaves inside the S7 and S7 Edge, and thus draw conclusions for the resulting performance of this particular package. Because we are testing the Snapdragon 820 confined in the S7 Edge and its waterproof body, and altered by TouchWiz and Samsung configurations, do not extrapolate our results: these scores and temperatures do not reveal how the 820 will behave in every flagship from now on, as many confounding variables will be different.
Our sample consists of 5 devices with various processors: an iPhone 6S Plus (Apple A9), S7 Edge (Snapdragon 820), Note5 (Exynos 7420), Moto X Pure (Snapdragon 808) and Nexus 6P (Snapdragon 810), and the HTC One M9 (Snapdragon 810) except for thermal imaging. We found some interesting results that we’d like to share in preparation for our in-depth testing and subsequent S7 Edge review. Without further ado, let’s begin.

CPU

Geekbench12345678
DeviceSingle CoreMulti CoreSingle CoreMulti CoreSingle CoreMulti CoreSingle CoreMulti CoreSingle CoreMulti CoreSingle CoreMulti CoreSingle CoreMulti CoreSingle CoreMulti Core
iPhone 6S Plus2520441025274415252644142529440225254407252944142528441225124401
Galaxy S7 Edge2337530923075179234153412336533523385379234153622327535923125281
Note51476512714805148147651411474514714805018147251151472507114754984
Moto X Pure1245344012473526125335111251350212173445121333881249348112183371
Nexus 6P124943481242461312554591118645031149421995936471018390810013801
HTC M91307391112843943124338851217383211863826116338601147366010683563
Here we have the first set of results, after we ran 8 consecutive Geekbench tests. This is a CPU-intensive test that is also cross-platform, allowing us to compare Android and iOS scores.

For those not familiar with the score breakdown, single core scores measure the performance of individual cores while multi core scores measure the performance of multiple cores at once. This distinction is important, because the Snapdragon 820 packs fewer (4) but more powerful cores than the Snapdragon 810 (8) and 808 (6), as reflected in single core scores.
all
In these tests, the Snapdragon 820 in the S7 fared surprisingly well with virtually no signs of throttling, with the Nexus 6P and HTC One M9 seeing the highest declines consecutively and in the final scores. The Note5 proved remarkably efficient throughout, mirroring the results we obtained on our Note5 in-depth review last year. The Exynos 7420 proved its might once more, and luckily enough, the Snapdragon 820 in the S7 manages to not only score higher than all other devices, but also retain those scores and lead all the way to the end. Below you can see an image comparison that exemplifies the thermal performance seen after the CPU stress-test.

img_thermal_1457023826080
Order: iPhone 6S Plus, S7 Edge, Note5, Moto X Pure, Nexus 6P
This image is telling as it shows the relative heat efficiency of each phone, with the ranking coming just as we expected and in-line with the final results of both of our tests. The iPhone 6S Plus (1st from the left) and Note5 (3rd from the left) show very good thermal efficiency (83°F|28.3°C). As we had noted in our Note5 review, the device rarely got hot, even under stress. The Nexus 6P got the hottest at 95°F|35°C, followed by the Moto X Pure at 88°F|31.1°C, and then the S7 Edge. It’s worth noting that the S7 Edge managed to keep a good balance between performance and heat, reaching 84°F|28.9°C, whereas the X Pure and Nexus 6P show less-stable performance. Overall, the S7 Edge kept its cool similarly to the Note5 in this CPU test.

GPU

3D MarkInitial T (F/C)12345Final T (F/C)
iPhone 6S+90/32.227592561246919002076104/40
Galaxy S7 Edge90/32.22511251924802103209099/37.2
Note590/32.21258124612441199123297/36.1
Moto X Pure91/32.81023973995100196891/32.7
Nexus 6P95/351330118012831185114197/36.1
HTC M993/33.91401126613381144108297/36.1
The newest Adreno processor in the Snapdragon 820 promises up to 40% better performance, and considering how powerful mobile GPUs have been getting, this is nothing to scoff at. We ran our sample through 3DMark and found that the 820 did bring the S7 Edge a sizable increase over both the Nexus 6P and the Galaxy Note5. But unlike our CPU results, the S7 Edge couldn’t keep its lead over subsequent tests. It’s worth noting that we let the devices cool down for 30 minutes in a 76°F|24.5°C room, but the initial temperatures were still not perfectly equal, likely due to the final temperature of the previous tests and the materials of the phones.

alldevs
The Snapdragon 820 S7 Edge began and ended with a good lead over all other Android devices, showing a healthy increase in GPU performance as promised. But the S7 Edge also saw some of the sharpest performance drops in this test, which is admittedly much more intensive than Geekbench. The Nexus 6P fared better by comparison, and the Note5 managed to sustain its performance as well. The M9, however, saw a really sharp decline from 1401 to 1082. At the end of each test we measured temperature again:
Surprisingly, the iPhone 6S Plus got the hottest under these tests, with the S7 Edge coming second. Both began the tests at the same temperature as the Note5, which didn’t get quite as hot, but managed to retain its score throughout the 5 rounds. The Nexus 6P surprised us by only getting 2°F hotter than its initial temperature, which we don’t have a clear explanation for; this might be the case that because this is a GPU-intensive test, and it was the CPU and not the Adreno 430 that suffered from architectural issues; thermal management and throttling were less of an issue, as the 430 was a formidable mobile GPU.

Closing Thougths

We reiterate: this is by no means representative of the 820 itself, as there are several confounding variables at play including but not limited to proprietary/software modifications, background services, internal hardware allocation, device volume, and more. This is also by no means an exhaustive analysis, but only the beginning of our in-depth testing. However, so far we can spot some interesting behavior displayed by the S7 Edge.
scrolling
First of all, the Snapdragon 820 does bring noticeable increases in theoretical performance, and this is a very welcome upgrade from what we saw in 2015. Indeed, we find that Qualcomm has managed to tame CPU throttling to a considerable degree. Further tests might reveal different results; if that’s the case, we’ll report back. GPU scores have also improved significantly, but it’s disappointing to see that the S7 Edge is not able to sustain its graphics performance through prolonged stress. That being said, the implications here are not too significant, and so far we haven’t had issues with Gear VR software/performance.

Perhaps what’s most interesting, yet not shocking, is that we still managed to find lag across the user interface, including random stutters and framedrops. Indeed, our go-to GPU profiling test showed many skipped frames when scrolling through the Play Store, significantly more than our 810 devices running stock or close-to-stock software (Nexus 6P, OnePlus 2). We’ve also encountered random input lockups where performance did not take a hit but we simply couldn’t interact with the UI for a few seconds (repeated instances on the camera app and settings menu, reported by two XDA editors).
We haven’t had our hands on this device for very long, and upcoming findings might reveal more about the nature of the S7 Edge, and in turn, further glimpses of the Snapdragon 820’s behavior under varied circumstances. For more coverage on the S7 and S7 Edge, stay tuned as our in-depth review will come soon